

Evaluation of two point-of-care (POC) multiplex PCR's as a rapid screening tool for respiratory syndromes.

A. Coussee¹, L. Florin¹, W. Vandewal¹, J. Robbrecht¹, K. Maelegheer¹

¹Department of Laboratory Medicine, AZ Sint-Lucas, Bruges, Belgium

BACKGROUND

POC molecular tests for respiratory tract diseases have the potential to improve patient management and antimicrobial stewardship.²

It can also provide a solution to obtain fast and reliable results in urgent situations.³

METHODS

Method comparison of 2 POC RMP analyzers of viral pathogens available in both assays:

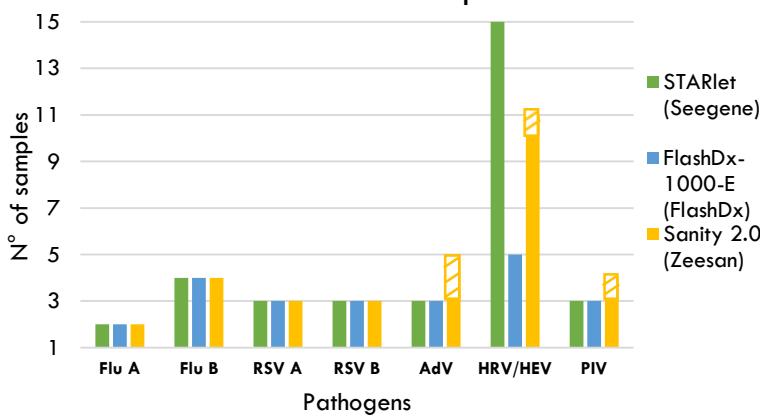
- RPP12 kit on the Sanity 2.0 System (Zeesan, China): 9 viral and 3 bacterial pathogens
- Respiratory Panel 1.0 on the FlashDx-1000-E platform (FlashDx, China): 8 viral and 1 bacterial pathogen

Inclusion of 27 nasopharyngeal samples, previously positive for at least one pathogen analyzed in routine (Respiratory panel 1A, 2 & 3 on STARlet platform Seegene, South-Korea).

Analytical evaluation: sensitivity & specificity

Feasibility: evaluation of pre-analytical, analytical and post-analytical phases

Method comparison of 2 POC analyzers for a respiratory tract infections multiplex PCR (RMP) detecting the most common respiratory pathogens:


- Analytical evaluation
- Assessment of their feasibility

RESULTS

- All samples positive on the STARlet platform (Seegene) for FLU A & B, RSV A & B, AdV and PIV were confirmed on both POC devices.
- **FlashDx-1000E (FlashDx):**
 - Missed 9 weak HEV/HRV positive samples.
 - Higher Ct-values for all targets compared to Seegene
 - Single sample analysis
 - Analysis time +/- 1h
- **Sanity 2.0 (Zeesan):**
 - Additionally detected AdV (2 samples), HRV/HEV (1 sample), and PIV (1 sample)
 - Missed 5 weak HRV/HEV positive samples
 - No Ct-values visible for user
 - Samples are batched in groups of 4
 - Analysis time +/- 2h30
- Both POC devices scored equally well in terms of ease of handling.

Results method comparison

Figure 1: Results method comparison (Influenza A Virus (Flu A), Influenza B Virus (Flu B), Respiratory Syncytial Virus A/B (RSV A/RSV B), Adenovirus (AdV), Human Rhinovirus (HRV), Human Enterovirus (HEV), Parainfluenza Virus 1, 2 and 3 (PIV))

CONCLUSIONS

✓ Both platforms are sufficiently **user-friendly** as rapid screening tools for respiratory syndromes.

❗ **Sensitivity issues** with HRV/HEV detection were reported in both assays

→ Limited clinical impact.⁴

→ Difficult to include all serotypes of HEV/HRV in a single PCR⁵

❗ **Specificity problems** with Sanity 2.0 (Zeesan) need to be further investigated and corrected

→ Potentially false positive results due to fluorescence-interference?

⇒ **Respiratory Panel 1. (FlashDx)** seems to meet the necessary requirements for accuracy, ease of use and TAT, although some important respiratory pathogens (e.g. human Metapneumovirus (hMPV)) are missing in this panel

REFERENCES

- ² Brendish NJ, Mills S et al. Impact of point-of-care testing for respiratory viruses on antibiotic use in adults with exacerbation of airways disease. Journal of Infection. 2019;79:357-362.
- ³ Chien-Yu L, Hwang D et al. Increased Detection of Viruses in Children with Respiratory Tract Infection Using PCR. International Journal of Environmental Research and Public Health. 2020;17:564.
- ⁴ Principi N, Zampiero A et al. Prospective evaluation of Rhinovirus infection in healthy young children. Journal of Clinical Virology. 2015;66:83-89.
- ⁵ Silva ERM, Watanabe ASA et al. Rhinovirus detection using different PCR-based strategies. Brazilian Journal of Microbiology. 2012; 739-743.